Bayesian Gaussian distributional regression models for more efficient norm estimation
نویسندگان
چکیده
منابع مشابه
Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملBayesian structured additive distributional regression
In this paper, we propose a generic Bayesian framework for inference in distributional regression models in which each parameter of a potentially complex response distribution and not only the mean is related to a structured additive predictor. The latter is composed additively of a variety of different functional effect types such as nonlinear effects, spatial effects, random coefficients, int...
متن کاملAn Efficient Estimation for Switching Regression Models
This paper investigates an efficient estimation method for a class of switching regressions based on the characteristic function (CF). We show that with the exponential weighting function, the CF based estimator can be achieved from minimizing a closed form distance measure. Due to the availability of the analytical structure of the asymptotic covariance, an iterative estimation procedure is de...
متن کاملSmoothing spline Gaussian regression: more scalable computation via efficient approximation
Smoothing splines via the penalized least squares method provide versatile and effective nonparametric models for regression with Gaussian responses. The computation of smoothing splines is generally of the order O.n3/, n being the sample size, which severely limits its practical applicability. We study more scalable computation of smoothing spline regression via certain low dimensional approxi...
متن کاملDerivation of regression models for pan evaporation estimation
Evaporation is an essential component of hydrological cycle. Several meteorologicalfactors play role in the amount of pan evaporation. These factors are often related to eachother. In this study, a multiple linear regression (MLR) in conjunction with PrincipalComponent Analysis (PCA) was used for modeling of pan evaporation. After thestandardization of the variables, independent components were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: British Journal of Mathematical and Statistical Psychology
سال: 2020
ISSN: 0007-1102,2044-8317
DOI: 10.1111/bmsp.12206